
ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

i

ADVANCED DISTRIBUTED

SIMULATION TECHNOLOGY II

(ADST II)

DISMOUNTED WARRIOR NETWORK

ENHANCEMENTS FOR RESTRICTED TERRAIN

(DWNERT)

DO #0055

CDRL AB02

DISAF MOUT Enhancements

Final Report

For:

United States Army
Simulation, Training, and Instrumentation Command

12350 Research Parkway
Orlando, Florida 32826-3224

Attn: AMSTI-ET

By:

Science Applications International Corporation
12479 Research parkway
Orlando, FL 32826-3248

Lockheed Martin
Information Systems Company

12506 Lake Underhill Road
Orlando, FL 32825



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

ii

Document Control Information
Revision History Date

Initial release 9/30/1998



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

iii

TABLE OF CONTENTS

EXECUTIVE SUMMARY .....................................................................................................................1

1. INTRODUCTION ...........................................................................................................................2

1.1 PROJECTBACKGROUND...............................................................................................................2
1.2 GENERAL REQUIREMENTS...........................................................................................................2
1.3 STATEMENT OFWORK.................................................................................................................3
1.4 DELIVERABLES ...........................................................................................................................3

1.4.1 Hardware and Software......................................................................................................3
1.4.2 CDRLs ...............................................................................................................................3

2. SOFTWARE DEVELOPMENT PROCESS...................................................................................3

2.1 OVERVIEW..................................................................................................................................4
2.2 NATURAL LANGUAGE CIS ...........................................................................................................5
2.3 SOFTWARECIS...........................................................................................................................5
2.4 VERIFICATION AND VALIDATION .................................................................................................6
2.5 SOFTWARECONFIGURATIONMANAGEMENT.................................................................................6
2.6 ON-LINE DOCUMENTATION .........................................................................................................6
2.7 PROBLEM TRACKING REPORTDATABASE .....................................................................................7
2.8 SOFTWAREMETRICS...................................................................................................................7

3. TERRAIN DATABASE ENHANCEMENTS .................................................................................7

3.1 CREATING AN MES FOR THEMCKENNA MOUT TDB..................................................................7
3.1.1 Overview............................................................................................................................7
3.1.2 MES Plug-in Development.................................................................................................7
3.1.3 Editting the MES .rdr File..................................................................................................8

3.2 DYNAMIC MES MODIFICATION....................................................................................................9

4. NEW IC ENTITY DEFINITION ....................................................................................................9

4.1 NEW ENTITY TYPES.....................................................................................................................9
4.2 BODY COMPONENTDEFINITION.................................................................................................11
4.3 LOWERBODY ...........................................................................................................................11
4.4 UPPERBODY.............................................................................................................................12
4.5 EYES........................................................................................................................................12

4.5.1 Requirements ...................................................................................................................12
4.5.2 Existing ModSAF model...................................................................................................13
4.5.3 DISAF modifications ........................................................................................................13

4.6 IC WEAPON..............................................................................................................................13
4.6.1 IC Weapon capabilities....................................................................................................13
4.6.2 Weapon usage..................................................................................................................14

4.7 PHYSICAL DIMENSIONS..............................................................................................................14
4.7.1 Dynamic dimensions.........................................................................................................14
4.7.2 Dynamic sensor location ..................................................................................................15

5. INDIVIDUAL BEHAVIOR ...........................................................................................................15

5.1 MOVEMENT ..............................................................................................................................15
5.1.1 Movement control ............................................................................................................15
5.1.2 Collision detection ...........................................................................................................16
5.1.3 Movement resources.........................................................................................................16
5.1.4 The IC Move behavior......................................................................................................17

5.2 LOCATION FIRE.........................................................................................................................18
5.3 TARGETING THREATS................................................................................................................18



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

iv

6. UNIT BEHAVIOR ........................................................................................................................19

6.1 SUPPRESSIVE FIRE.....................................................................................................................19
6.2 CLEAR ROOM............................................................................................................................19

7. PVD ENHANCEMENTS ..............................................................................................................20

7.1 ICONS.......................................................................................................................................20
7.2 MAP SCALE...............................................................................................................................20
7.3 MESBUILDING DISPLAY............................................................................................................20

8. MODSAF INTEGRATION ...........................................................................................................21

8.1 VERSIONHISTORY....................................................................................................................21
8.2 INTEGRATIONDOCUMENTATION................................................................................................22

9. SUPPORT ACTIVITIES ...............................................................................................................23

9.1 TEAM MEETINGS.......................................................................................................................23
9.2 EXPERIMENT SUPPORT..............................................................................................................23
9.3 WEB SITE .................................................................................................................................23
9.4 TECHNICAL CONFERENCES........................................................................................................23

10. LESSONS LEARNED...............................................................................................................23

11. REFERENCES ..........................................................................................................................25

APPENDIX A. MES DEFINITION CONVENTIONS .........................................................................27

GEOMETRY..............................................................................................................................................27
TOPOLOGY...............................................................................................................................................27
APERTURES..............................................................................................................................................28



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

1

Executive Summary
Dismounted Infantry Semi-Automated Forces (DISAF) was developed as a component of the Dismounted
Warrior Network (DWN) project. DISAF filled out a fireteam of four soldier trainees in Virtual Individual
Combatant (VIC) platforms to a platoon of two squads and provided opposing force targets during DWN
user exercises on a McKenna MOUT site database. The DWN exercise involved a team of four trainees
assaulting and clearing a building.

The software development process started with the development by an SME of a Natural Language
Combat Instruction Set (NLCIS) document, describing the required behaviors for the given task. Once
each NLCIS was complete, it was turned over a DISAF software engineer who then transcribed the
NLCIS into a corresponding Software Combat Instruction Set (SWCIS). Once the transcription was
completed, it was reviewed by the originating SME and the assigned SW Engineer, and any discrepancies
were reconciled. Validation was performed when the unit-tested software was integrated into the DISAF
baseline. Other software process tasks performed included configuration management and the
maintenance of on-line documentation and a problem reporting database.

The McKenna MOUT database was developed both as a visual database and a ModSAF CTDB.
Operations in the DWN exercise were inside a building; thus the database had to contain interior details
for one building. The CTDB was built by converting the visual, OpenFlight database to a ModSAF MES
(building) data file using AutoCAD. In order to read the OpenFlight data and write out the information in
ModSAF format, an AutoCAD plug-in was developed. The resulting data file was merged with a terrain
skin database using ModSAF’s recompile program.

Since the DWN exercise required that a hole be blown in the building wall. A repolygonization algorithm
developed at ARL was used in all the DWN systems to transform the wall in response to a DIS detonation
PDU at the wall. Additional code modified the DISAF MES data structures to reflect the change in
topology.

New IC entities were created for DISAF. These entities use ModSAF conventions for the most part, but
use components and primitive behaviors that have been rewritten specifically for humans rather than
vehicles. Components upgraded included the lower body (“hull”), upper body (“turret”), eyes (“sensor”),
and infantry weapon (“ballistic gun”). These component upgrades added the capability to change posture
and change weapon state. The physical representation of IC entities was improved to allow the entity’s
dimensions to change dynamically as it changes posture.

New unit behaviors were added to DISAF to move the IC entities precisely (needed inside buildings).
Behaviors available from the first phase of DISAF were modified to provide unit suppressive fire behavior
and individual “location fire.” The latter was used by missile launcher ICs to target the building wall in
addition to supporting the suppressive fire behavior. A fireteam clear-room behavior was implemented to
coordinate the movements of four soldiers as they enter a room.

The DISAF plan view display was enhanced to show icons representing IC entities in different postures
and weapon readiness states. The display resolution was increased to allow users to see the small IC
entities in small areas (rooms) at a reasonable size. Point placement resolution was also increased to
allow users to place and designate routes for ICs very precisely.

The DISAF project culminated with the integration of the DISAF ERT into ModSAF for release as
ModSAF 5.0 in early 1999.

Additional DISAF project activities included weekly integrated project team meetings, oversight of a web
site for DWN documentation, support of engineering and user exercises at Ft. Benning, and presentation
of papers on DISAF at technical conferences.



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

2

1. Introduction

1.1 Project Background
Dismounted Infantry Semi-Automated Forces (DISAF) is a component of the Dismounted Warrior
Network (DWN) project. The major thrust of the overall Dismounted Warrior Network DWN effort is to
develop a set of requirements for dismounted infantry (DI) simulation to support both the Training,
Exercises, and Military Operations (TEMO) and the Advanced Concepts and Requirements/Research,
Development, and Acquisition (ACR/RDA) domains. The most recent phase of DWN, Enhancements for
Restricted Terrain (ERT), builds upon the lessons learned from the previous DWN effort and focuses on
restricted terrain applications, specifically military operations in urban terrain (MOUT).

The DWN ERT experiments are intended to compare and contrast the ability of the key features of
different Virtual Individual Combatant (VIC) technologies to support DI task performance in a virtual
MOUT environment. The intent of comparing these different technologies over different tasks is to
document the capabilities of each in order to be later matched against functional fidelity requirements
flowing from the fidelity analysis portion of the original DWN effort. The result is the beginnings of a
catalog that match existing technologies and capabilities against simulation requirements, and the
identification of areas where future technology development is required.

The DISAF being developed by SAIC for the DWN effort have provided supporting BLUFOR to the VICs
during the user exercises, as well as OPFOR snipers during these exercises. The DISAF was also the
object of investigation during the experiments to assess its performance during both portions of the
experiments (engineering and user).

The DISAF capabilities to support DWN primarily consist of creating new individual combatants (ICs)
and IC-based units, and expanding ModSAF behaviors at the fireteam and squad levels relative to the
scenarios used for DWN.

1.2 General Requirements
The DWN experiment requirements motivated many of the tasks in the DISAF project. The DWN ERT
exercises take place on a database representing the McKenna MOUT (Military Operations in Urban
Terrain) site at Ft. Benning, Ga. The exercise used the interior of one building (labeled “Building A”);
the terrain database therefore modeled the interior of this building in detail. It was necessary to develop a
DISAF terrain database that included a detailed, Multi-Elevation Structure (MES) representation of
Building A.

The soldiers in DWN are displayed using an animated human figure that can assume various postures,
gaits, and weapon positions; likewise, the communication protocol (DIS 2.0.4) supported these multiple
configurations. Because the human trainees could observe DISAF entities closely, it was necessary for
DISAF to carefully model the use of different body and weapon positions. Much of the DISAF work thus
concentrated on “primitive” behaviors for individual DISAF combatants.

The DWN exercise involved a team of four trainees assaulting and clearing a building as part of a two-
squad force. The second team in the trainees’ squad and the entire second squad were made up of DISAF
entities. Both squads moved to the building and participated in clearing rooms. DISAF entities thus
needed to be able to maneuver through an MES building and enter rooms as a team. DISAF behavior
work focused on individual movement and team room-clearing. Additional behaviors modeled fire at a
location, needed for suppressive fire and for breaching walls and doors.

The DWN exercise required special, ad-hoc dynamic terrain capabilities: At the beginning of the exercise
scenario, a DISAF soldier uses a missile launcher to blow a hole in the side of the target building. Later,
a soldier shoots out doors with a squad automatic weapon (SAW).



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

3

1.3 Statement of Work
Tasks to enhance DISAF were tracked as part of an overall list of tasks for DWN. Table 1 lists the DISAF
tasks and indicates which parts of this report discuss those tasks.

WBS Description Addressed in this
report section

1.1.2 Meeting Support 9.1
1.2.1 DI SAF Enhancements (NLCIS, SWCIS, V&V, primitive

functions)
2, 4, 5, 6

1.2.5 DWN Web Site Operation 9.3
1.2.6.1 Dynamic Terrain 3.2
1.2.8.3 Graphical MES Editor, Bldg A, and DISAF PVD 3.1
1.2.8.4 ModSAF Baseline Integration 8
1.2.8.6 DWN ERT Capstone Study NA
1.3 Application Support 9.2
1.4.1 Data (Problem Report) Analysis 2.7

Table 1. Table of DISAF DWN tasks and their location in this report.

Tasks marked “NA” are not applicable for this table because this report is due before those tasks are to be
performed.

1.4 Deliverables
The deliverables consist of hardware, software and CDRL items.

1.4.1 Hardware and Software
Development hardware remains in Orlando (Two SGI Indys and one Maximum Impact). DISAF version
3.0 software was installed at the Land Warrior TestBed at Ft. Benning. SAIC has delivered DISAF
version 4.0, ModSAF 4.0 with DISAF enhancements, to the ModSAF integration team for integration into
ModSAF 5.0.

1.4.2 CDRLs
Three CDRL items were developed for this delivery order. They are tabulated in Table 2. The CDRL
items will be posted to the DWN web site, which can be found at the following address:
“http://www.stricom.army.mil/PRODUCTS/DWN.”

CDRL # Description CM Number Date
AB02 DISAF MOUT Enhancements Final Report ADST-II-DWNERT-9800259 9/30/98
AB05 DISAF Support Summary Report ADST-II-DWNERT-9800091 5/30/98
AB06 DWN ModSAF Baseline Documentation ADST-II-DWNERT-9800261 9/11/98

Table 2 DISAF CDRL

2. Software Development Process
This section presents our approach for developing the DISAF software.



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

4

2.1 Overview
Figure 1 presents the approach for developing DISAF behaviors. The process starts with a Natural
Language Combat Instruction Set (NLCIS) document, describing the required behaviors for the given
task.

Once the NLCIS is complete, it is turned over to the DISAF software engineer responsible for
implementation. The engineer then transcribes the NLCIS into a corresponding Software Combat
Instruction Set (SWCIS). In general, this process consists of finalizing the requirements in the NLCIS
until they are to a point that the SW design can begin. In addition, during this period, the SW engineer
reviews the NLCIS requirements to determine if there are any that cannot be implemented. This might
happen if the NLCIS requirement is not feasible given current technology (e.g. the requirement will
require more computer cycles than the current hardware can support). Another reason for not including a
requirement would be if it would require a design complexity that was beyond the scope of the present
contract. In either case, such a requirement would be flagged for further review with the originator
(SME) and with project management.

In some cases, the analysis by the software engineer will result in changes to the NLCIS. This would
happen when the NLCIS is not complete or contains errors that were discovered by the software engineer.

For each SWCIS, once the requirements analysis is complete, it will be reviewed by the originating SME
and the assigned SWE, and any remaining discrepancies will be reconciled.

NLCIS
Requirements

SWCIS
Requirements/

Architecture

Detail Design,
Code & Unit

Test

Verify

Validate

System Integration

Review

Prelimary
Design

Detailed
Design and

Development

Unit
Testing

Delivery

Software Effort; includes SWCIS
Requirements/Architecture
The SWCIS will identify
exceptions/modifications to the
NLCIS document. The Software
will be tested against the SWCIS

SME Effort

SME Task to verify
that SWCIS’s are
developed
consistent with
parent NLCIS’s

Requirements
Analysis

SME Task to
validate that code
performs
consistent with
parent SWCIS’s

Software task

Figure 1 - DI SAF Software Development Approach



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

5

2.2 Natural Language CIS
The purpose of natural language combat instruction sets (NLCIS) is to provide a sufficiently detailed
description of real world combat behaviors that software engineers can successfully translate the
description (tasks, conditions and standards) into requirements and code. NLCIS establish clear
traceability to US Army doctrinal and tactical references, including ARTEPS, STPs, MTPs, andFMs.
The development of the NLCIS is done by Army Subject Matter Experts, who are well-versed in tactical
doctrine. A standard format for preparing CISs, used successfully during the development of the US
Army’s Close Combat Tactical Trainer (CCTT) and the British Army’s Combined Arms Tactical Trainer
(CATT) was used to write the NLCIS descriptions.

Table 3 lists the NLCISs developed for DISAF. These CISs were selected from a Task List developed for
DWN when the exercise scenario was developed.

CIS # Description
DI9004 ClearRoom
DI0104 Enter Building and ClearRooms (Squad)

TSK1004 Engage Targets With a M136 Launcher
DI0102 Perform overwatch/support by fire
DI9005 Clear Hallway

TSK1003 Engage Targets With M249 SAW
TSK2001 Engage Targets With M16A2 rifle
DI0101 Move tactically

TSK1001 Perform MOUT Movement Techniques
DI0105 Enter and Clear Building (Platoon)

TSK1005 Move as a Member of a Fire Team
TSK1006 Select an Overwatch Position
DI0106 React to contact
DI9002 React to Sniper Fire
DI0103 Execute assault
DI9003 React to Obstacles (rubble/walls)

TSK1002 Select MOUT Hasty Firing Position
TSK2002 Move Under Direct Fire
TSK2003 Select Temporary Fighting Positions
TSK1007 Control Movement of Fire Team
TSK1008 Control Maneuver of Squad

Table 3. DISAF Combat Instruction Sets

2.3 Software CIS
The SWCISs will constitute the top level of the software design, that is they will represent the “contract”
between the SW developers, the SMEs, and the user community (as represented by Lockheed and
STRICOM). The development of NLCISs into SWCIS might typically include

• converting symbolic requirements into numeric requirements (e.g., “near”⇒ “less than 5 meters”,
etc.),

• identify timing and coordination constraints (e.g. event “A” has to occur before event “B”)
• identifying spatial constraints (e.g. where an entity has to be at the beginning, end, and during a

behavior)
• identifying coordination requirements (e.g. when one behavior controls another).



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

6

All of the NLCIS listed in Table 3 were converted to SWCIS. However, due to time constraints, only the
top seven CISs in the table were implemented in DISAF.

2.4 Verification and Validation
Validation was performed when the unit-tested software was integrated into the current DISAF baseline.
Both the SME responsible for the corresponding NLCIS behavioral description, and the software
developers were involved. Typically a DISAF operator/developer would create scenarios and cause
DISAF entities to perform tasks requested by the SME, who examined the operator tasks required and
available and observed the resulting behavior on the DISAF plan view display. The SME requested tasks
and behaviors that would demonstrate the activity described in the SWCIS.

2.5 Software Configuration Management
Software development involved dozens of ModSAF files and was performed concurrently by several
developers. As a result, it was imperative that an adequate system for configuration management be
employed, to maintain control over the evolving software configuration. The objective of a configuration
management process is to track the implementation status on a file by file basis. As a result of using an
adequate configuration management system, the developers can track the history of modifications to each
file in ModSAF. The configuration management system that was chosen to use on the DISAF program
was the Concurrent Version System, or CVS.

CVS is a CM tool that keeps a single copy of the master sources of a program and documentation. This
copy is called the source “repository”; it contains all the information to permit extracting previous
software releases at any time based on either a symbolic revision tag or a date in the past.

The “cvs edit <file>“ command allows a file to be modified, otherwise all files under CM are write
protected.

After editing, sources are committed back to the repository with the “cvs commit <file>“ command. An
editor is automatically started and the developer is required to document changes made to the file(s) before
cvs will accept the file into the master.

The commands “cvs status” and “cvs update” allow the developer to check the status and receiveupdates
from the archive. History on any file can be retrieved with the “cvs history” command to see the history of
modifications along with the developer comments entered using the “cvs commit” command noted above.

In addition to log files maintained by CVS for each file, additional documentation is archived on a library
or concept basis. This supports a forum for communicating issues about the file and even library level
such as potential problem areas and new ideas. Text log files are also maintained with CVS.

2.6 On-line Documentation
During the development of DISAF, extensive documentation was developed and maintained on the same
computer file system as the DISAF source code itself. Documents were written in HTML format, which
allowed them to be accessed easily from any project computer using Web browser software. The HTML
format allowed easy inclusion of screen captures to illustrate points and automatic hyperlinks to connect
together related documents. A single top level page serves as the index into all of the documentation.
The project maintained a variety of documents including open design questions, DISAF architecture
documentation, code enhancements, notes from Technical Interchange Meetings, telephone and email
contacts, short term task lists, etc.



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

7

2.7 Problem Tracking Report Database
Beginning with the validation of version 3.0 in July 1998, problems with DISAF reported by validating
SMEs, users, and developers have been logged in problem tracking reports (PTRs). These PTRs are
maintained in an HTML file and is available on-line. Periodically in IPT meetings the PTRs are
prioritized based on how the problems affect approaching DISAF development milestones.

2.8 Software Metrics
The DISAF effort, including portions of open terrain behavior that were migrated from DISAF 1.1 to the
ERT versions of DISAF, involved modifying or creating about 400 ModSAF files. These files contain
over 267,000 lines of source code and data. Of these, approximately 28,000 are from the DWN Phase 1
effort, 36,000 are in new libraries for the ERT phase, and 203,000 are in files modified to support basic IC
capabilities, IC definitions, MES operations, and other supporting functions.

3. Terrain Database Enhancements

3.1 Creating an MES for the McKenna MOUT TDB

3.1.1 Overview
This task was added to the project when it was discovered that it would not be possible to use an existing
McKenna MOUT Site building that had previously been constructed as a MES model. It therefore became
necessary to create another MES model (Building A) for the McKenna MOUT Site including the
necessary development and visualization tools. A graphical editor was required to create Multiple
Elevation Surfaces (MES) data structures from MultiGen Flight databases.

This section discusses the methods and tools used to develop an MES building for the CTDB database
format used by ModSAF. The process was painstaking, involving numerous steps as shown in Figure 2.
The steps are as follows:

1. The McKenna MOUT terrain skin, terrain features, and building A details were developed, debugged,
and refined in OpenFlight format (visual database).

2. The terrain skin and features were converted to ModSAF CTDB format 7 with a Multigen software
tool.

3. The OpenFlight building model was imported into AutoCAD using a custom-developed plug-in.
These data were then used as a template to create the geometry of an MES building model. Naming
conventions for the AutoCAD layers were used to establish the topology of the building.

4. An MES data file was written by AutoCAD, again using a custom plug-in.

5. The MES data file was edited by hand to add the transformation matrices needed to locate the
building on the terrain, and to adjust aperture directions, etc.

6. The MES data file was merged into the CTDB of the terrain skin using the ModSAF recompile
program.

This process is described in [Lockheed 1998].

3.1.2 MES Plug-in Development
Instead of creating an MES from scratch, the DWN MES plug-in can be used to import data from
OpenFlight v14.2. The MES Plug-in was developed using the AutoCAD ObjectARX API and



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

8

development environment. Full documentation for the process of developing an ObjectARX application
extension is provided in the ObjectARX documentation that is installed with the System Development Kit.

In the best case, the OpenFlight file will be structured in exactly the format of an MES building, and all
that is required is to load the OpenFlight and then export to the .rdr file without having to do any
geometry construction or modification in the interim. However, a visual model will typically NOT be
constructed as an MES. More typically then, the OpenFlight geometry must be used as a template to
locate the surfaces of each room and the MES must be constructed from scratch with the correct polygons.

In addition to creating the correct polygons, a user must separate the polygons in to apertures and
enclosures. Each layer in AutoCAD corresponds to a single enclosure or aperture. In addition, certain
naming conventions must be followed.
• Enclosure layersare always named starting withEnc.
• Aperture layers are always named starting eitherAd to indicate a door aperture orAw to indicate a

window aperture. The next two components of the aperture layer name are separated by underscores
‘_’ and indicate which two enclosures are connected by the aperture. The format is
ad_<enclosure name>_<enclosure_name>

• A door aperture connecting two enclosures EncABC and EncDEF would be called
Ad_EncABC_EncDEF. If multiple apertures connect the same two enclosures a trailing underscore
and more text can be appended to the enclosure name to differentiate the apertures (i.e.
Ad_EncABC_EncDEF_1, Ad_EncABC_EncDEF_2, etc.)

Once the MES is constructed, the plug-in can be used to write out the data as an MES .rdr file.

3.1.3 Editing the MES .rdr File
Once the .rdr file has been created, it must be edited to locate the building on the database. The .rdr file
has two sections, atemplate section and avolume section. The template contains the geometry of the
building with respect to some local coordinate system. Thevolume section tells the compiler where to
instantiate the building and at what orientation. The same template can be instantiated multiple times by

Figure 2 Process for creating TDB with MES building

MultiGen
MES Editor
(AutoCAD &
MES plug-in)

CTDB

Open-
Flight

CTDB

VICs DI SAF

RecompilerReader
Files

Building A Model
(OpenFlight)

McKenna Database less Building A Model (CTDB)

CTDB Translator



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

9

having multiple volume sections in the .rdr file. The template section is created in the export process. The
VOLUME section must be added by hand.

Other manual changes required in the .rdr file include the following:
• Material Type - The material types in the .rdr file must be set.
• Wall_thickness –This defaults to be 0.001 and 0.000. The value on the side of the aperture facing

into the frame area should be set to the actual wall thickness.
• Model name –The name of the model always defaults to BuildingA. This may be changed for a

different building.

3.2 Dynamic MES modification
Part of the DWN exercise involves having a fireteam enter a building through a hole blown by an AT8
missile launcher. In DWN this dynamic terrain problem was approached by distributing the calculation
among all simulator nodes.

To create a hole in the local database of every simulator node in the exercise, each VIC and SAF computes
the effect of a blast on the building independently—using the same algorithm and arriving at roughly the
same result. An algorithm was available from the Army Research Laboratory (ARL) to repolygonize a
wall to create a hole of specified size. For the VICs, this algorithm was sufficient to produce a modified
visual database that showed a hole; for DISAF, the algorithm was modified to work with the different
MES geometry and then extended to update the topological information stored in the MES. In particular,
each hole created caused a new aperture to be created. This aperture had to have its own shape described
with new triangles and an outline polygon, and it had to be connected to the room structures that were
affected by the hole. Since the MES structure is built up from arrays of points, triangles, and other
structures, inserting the new information required that the entire MES data structure be copied and the old
one deleted.

Hole creation in DWN is triggered by DIS detonation PDUs. DISAF was modified to respond to
detonation DIS PDUs by checking their proximity to building walls and triggering a hole-creation
algorithm when the distance is below a given threshold. This threshold was set by DWN team members
at technical interchange meetings. At these meetings it was also agreed that a “large building hit” result
in the DIS PDU would be required to blow a hole; thus other detonation results do not trigger a proximity
check in DISAF.

Another part of the DWN exercise requires that the SAW gunner from a fireteam shoot down a door to a
room so that the fireteam may enter and clear the room. To implement this DISAF checks detonation
PDUs to see if the munition path intersects a door. If so, the aperture attribute is set to “open.” The DWN
project team agreed on the convention that only a detonation result of “medium building hit” could cause
a door to be breached.

The M136 munition, fired by the AT-8 was the only weapon in the DWN that could cause a large building
hit result. The M855 round causes a medium building hit, but only when fired by a SAW (not an
M16A2). The DISAF IC weapon software library was extended to produce these detonation results for
those weapons and munitions.

4. New IC Entity Definition

4.1 New entity types
DISAF implements a variant of a US Army mechanized infantry squad with an AT-8 for a missile
launcher and with the grenadier replaced by a rifleman. Previously, ModSAF implemented a fireteam as
a single simulation entity that was represented visually by a four-man icon. This project implements
fireteams as individual soldiers. For friendly forces, a squad of 9 ICs is composed as follows:



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

10

Role Unit Weapon Munition

1 Squad Leader (Rifleman) Squad M16 M855

2 Fireteam Leader
(Rifleman)

Fireteam A M16 M855

3 Rifleman Fireteam A M16 M855

4 Rifleman Fireteam A M16 M855

5 SAW Gunner Fireteam A SAW M855

6 Fireteam Leader
(Rifleman)

Fireteam B M16 M855

7 Rifleman Fireteam B M16 M855

8 AT8 Fireteam B AT8 & M16 M136, M855

9 SAW Gunner Fireteam B SAW M855

An OPFOR squad consist of a team of four ICs as follows:

Role Unit Weapon Munition

1 Squad Leader (Rifleman) Squad AK47 PS

2 Rifleman Squad AK47 PS

3 Rifleman Squad AK47 PS

4 Rifleman Squad AK47 PS

ModSAF’s SIMNET origins show up directly in its internal type classification of “lifeforms.” While
tanks and other vehicles are discriminated by country, class, role, etc., life forms are all lumped together
in one category. This situation creates problems in, for example, identifying threats to tanks; each
missile-carrying life form must be listed individually rather than listing only a weapon class. For DISAF
we have created the following new life form categories:
• Weapon Class
• Country
• Weapon
• Service
• Function

“Functions” are (nearly) permanent characteristics such as “combat” or “medical,” rather than dynamic
roles such as “squad leader” or “assistant gunner.” Those roles are determined by the IC’s position in its
unit.

In designing these categories we considered eliminating the weapon as a type-discriminating feature,
since it is easy to imagine a future requirement that would have entities picking up different weapons (for
example, to keep automatic weapons in use). However, this approach was too much in conflict with DIS
and the internal structure of ModSAF to be feasible in the time frame of the DISAF project.



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

11

4.2 Body Component Definition
ModSAF entities are defined in part by a set of physical components. These components define the
simulation models and parameters for the hull or body, for guns, sensors, radios, etc. Our ModSAF IC
entities are defined to have a “lowerbody,” and “upperbody,” “eyes,” and an “icweapon.” Figure 3
illustrates how these components form an IC.

Classes of components in ModSAF are defined to other simulation modules in terms of interface
functions. Each instantiation of the class should implement all of the interface functions; general
behaviors can then be written without regard for which kind of instantiation they are controlling.
However, in practice component functions and behaviors are often specific to certain types of entities such
as aircraft or rotary-wing aircraft. DISAF too requires functional capabilities that are specific to ICs, such
as changing posture or deploying a weapon. We have added this functionality without forcing artificial
functions onto other entity types by defining new component classes which are derived from existing ones.
Thus “LowerbodyDHull” is a class derived from the hull component class; it includes all of the hull
functions and adds new IC-specific functions. “UpperbodyDTurret” and “ICWeaponDGun” similarly are
derived classes. This approach crudely approximates language support for subclasses that is provided in
languages such as C++.

4.3 Lower Body
The lower body component implements all movement functions of the IC. It is capable of moving
forward, backward, or sideways. It maintains the posture state of the IC entity and changes posture
between “standing,” “kneeling,” and “prone” by implementing new component functions.

The set-posture function is an important addition to the lower body model for two reasons. First, due to
the animation of state changes in DWN, posture changes take a significant amount of time—e.g., 4.5
seconds for a standing to prone transition. DISAF ICs cannot change state instantly or there would be
several seconds of error between the internal simulation of the IC and the remotely displayed rendering of
the IC. However, the start of a posture change must immediately be reported over the network to other
simulations so that they may begin their animations. Thus when a DISAF IC begins a posture change, the
lower body simulation changes DISAF’s network representation (in libentity) of the IC immediately but
waits for some time before changing the internal state (in liblowerbody).

The second reason the lower body posture change function is important is that it takes away the ability of
behaviors from changing the state of an IC directly in ModSAF’s network representation. The lower body
model can track health, damage, and other factors which can affect the time or ability of the IC to change
postures; it is inappropriate for a behavior to shortcut this model.

Eyes

IC Weapon
Upper body

Lower body

Figure 3. Components of an IC.



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

12

Besides the posture states mentioned above, “crawling,” “crouching,” “walking,” and “running” are
controlled by the lower body model. These “gaits” are not set by the set-posture function; rather, they are
set automatically based on the posture and current speed of the IC. Crawling is prone plus a speed,
crouching is kneeling plus a speed, and walking and running are standing plus a slow and fast speed,
respectively. The speed thresholds at which the entity changes into these appearances are set by
parameters.

Many capabilities of an IC are affected by its posture. The lower body model includes parameters to
reduce the maximum movement speed when the IC isn’t standing, and to limit which postures are allowed
when the IC has been injured. The lower body model will refuse to change postures if the IC’s speed or
damage would not support the new posture.

4.4 Upper Body
The upper body component is analogous to the turret of a vehicle. It slews the weapon, and, at the present
time, the eyes. We included this kind of component for two reasons: first, the ModSAF code upon which
DISAF was developed assumes that weapons must be mounted on turrets, and we sought a good transition
representation that would allow us to use existing behaviors; second, we wanted to provide the
infrastructure that would, in the future, support the weapon aiming control capabilities available in the
animation system used for DWN (DI-Guy, from Boston Dynamics Inc.—Koechling 1997).

The upper body component is designed to control the arms in general. Thus besides aiming the weapon, it
deploys and stows it; it is also intended to deploy other objects (e.g. binoculars), throw grenades, and give
arm signals. The upper body model is responsible for controlling the arm “resources” so that these actions
cannot all be performed at once.

The new functions currently implemented for the upper body (beyond the existing turret functions) are
• Stow all
• Deploy component
• Drop component
• What is held?

As with the lower body’s posture change operation, the stow and deploy operations are animated on
remote simulation nodes and take non-zero time to perform. These operations are implemented by
changing the network representation immediately but changing the internal state only after a delay.

Unlike most tank turrets, the upper body “turret” does not rotate all of the way around. This physical
limitation has implications for aiming the gun which ModSAF’s current gun model and search model
ignore.

4.5 Eyes
The eyes are attached to the upper body. We have given them a fixed orientation and a field of view of
160 degrees. Within this field of view acuity and other characteristics are uniform.

4.5.1 Requirements
In DWN, SAF entities have close interaction with manned simulators--potentially moving in and out of
view at ranges of less than 10 meters. We would like to approximate the capabilities of a human in this
environment. In particular the simulated IC should, for nearby entities,
• detect entities that are visible only for a short time
• quickly detect entities that are in the periphery of the field of view
• direct its focus of attention—i.e., higher resolution vision—to detected objects in the peripheral part

of the field of view.
• quickly identify targets near the center of the field of view.



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

13

For example, as the IC enters a room in a room-clearing task, it should be able to detect targets and
engage them in less than a second.

4.5.2 Existing ModSAF model
The existing visual sensing model in ModSAF is based on a model from the Army’s Night Vision and
Electronic Systems Directorate (NVESD). This model is described by Lind (1995). It incorporates many
factors affecting acquisition including apparent target size, atmospheric attenuation, and target contrast
with background. It assumes that the observer is looking for targets by scanning a scene, and that it takes
some time to scan the scene. The scanning pattern and scanning time as a function of field of view size
are not modeled explicitly. Given a set of input factors listed above, the NVESD model produces a
detection time. If the detection time is greater than the scene scan time, then detection does not occur at
all. If detection does occur, the model determines the level of acquisition (e.g. just a detected entity, a
class of vehicle, or exact type of entity).

In the ModSAF implementation of the NVESD model, an observer using direct vision is given a 10 degree
(horizontal and vertical) field of view. Some types of observers—e.g. an M1 tank gunner—sweep their
direction of gaze continuously with a vehicle component; others with “orientable” sensors—e.g. an M1
tank commander—can change their direction of gaze instantly to random directions. The sweep and
redirection are controlled by a behavior that does not consider what bogeys or targets have been detected.
For both types of sensors possible acquisitions are checked only every3 - 5 seconds; in the case of
orientable sensors, they are redirected before every check. Computed detection time for close or large
targets is very small, on average, but the minimum time is currently limited to 1.0 seconds.

There are clearly several problems with the nominal ModSAF acquisition model, given the requirements
outlined above. First, line of sight to undetected entities is sampled only once every3 - 5 seconds, so
entities not visible for that long could be missed completely. Second, there is no peripheral field of view;
the 10 degree field of view effectively models only the narrow, high-resolution foveal vision with which
targets would be identified. Third, search of the environment has no relation to objects or bogeys of
interest. Fourth, acquisition of even the closest, mostobvious target could take over 6 seconds—5 or more
seconds for the next sample time, and then another 1 second for acquisition time.

4.5.3 DISAF modifications
In order to meet the requirements outlined above, it will be necessary to implement a revised visual
sensing model in ModSAF. However, for the shorttime frame of DWN ERT, DISAF has only a modified
version of the existing vision model. The modifications allow the DISAF ICs to meet the requirements
reasonably well.

The first modification was to expand the field of view for ICs to 160 degrees. This gives them peripheral
vision, although it is too good because it has the acuity of foveal vision. Second, the default scanning
behavior was suppressed. This helps make up for the 160 degree foveal vision; in effect, the wide field of
view is an aggregation of back-and-forth scanning. Turning off the scanning also prevents unrealistic use
of the eyes to look to the side and to the front at the same time. ICs do not have a second set of eyes in
their “hull” to drive with, unlike tanks. The third modification to the sensing model was to eliminate the
1 second minimum acquisition time. Finally, the3 - 5 second sampling period was reduced to one half
second. We have not yet determined the effect of this modification on system performance.

4.6 IC Weapon

4.6.1 IC Weapon capabilities
The IC weapon component is derived from the general ballistic gun model in ModSAF but is intended to
simulate small arms that an IC manipulates with his hands. While the upper body performs the general
deploy and stow operations on all such components, the components themselves determine more specific



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

14

actions with their interface functions. The most important function for IC weapons is the gun function
already declared in ModSAF to set the position of a “launcher;” the IC weapon implementation uses this
function to raise the weapon to firing position. As with the set-posture and deploy/stow functions above,
this function sets the network appearance immediately but changes the internal state after a delay.

New IC weapon functions include the following:

• Get stow, deploy time
• Stow, deploy
• Set, get burst mode

The get-stow, deploy time functions provide weapon-specific delay times for the upper body component
when it deploys or stows the weapon. The stow and deploy functions appear to be redundant with the
stow and deploy functions of the upper body, but the IC weapon versions immediately toggle a flag in the
weapon model. This flag, when indicating that the weapon is stowed, disables all weapon functions. The
IC weapon stow/deploy functions are called by the upper body model when the internal state changes.

The burst mode for an IC weapon is typically “automatic” or “semi-automatic.” Semi-automatic weapons
fire only one round at a time—i.e., only one fire message, indicating one round, is broadcast from the
simulation each time a behavior requests fire. The “quantity” argument in the gun’s fire function is
ignored. M16A2 rifles also have a “3-burst” mode which fires 3 rounds automatically. A bolt-action
mode could also be supported by requiring an extra pause between rounds.

4.6.2 Weapon usage
Weapons fire for most entities in ModSAF is controlled through the IC Weapon model. In addition to the
new features described above, we have made a number of changes to the nominal weapon firing process to
accommodate small arms procedures and close quarters engagements.

One of the biggest features lacking from the existing ModSAF gun control model is the ability to rotate
the body (hull) to aim the weapon. The existing gun controller directs the turret to rotate to the target and
assumes that it can get there. If the turret slew limits prevent it from rotating far enough, the gun
controller fails. We have added to the IC Weapon gun controller the ability to direct the body to rotate to
aim the weapon.

ICs in DISAF are required, as part of one of their behaviors, to fire two rounds at a target. This is done
with the fire selector on semi-automatic, so it represents two trigger pulls. ModSAF allows behaviors to
specify how many rounds the gun is to fire, but the existing gun model implements this as an automatic
fire burst of two rounds. The new IC Weapon model, as mentioned above, would not fire an automatic
burst but would not fire two rounds, either. The two deliberate trigger pulls are properly modeled in a
behavior rather than in the gun model; thus we have modified the nominal targeting behavior in ModSAF
to accept a volley size parameter and to quickly repeat fire commands to the gun model until the complete
volley has been fired. These rounds are fired regardless of whether the IC has lost sight of the entity or
seen him change state to “destroyed.”

4.7 Physical dimensions

4.7.1 Dynamic dimensions
The physical makeup of the IC shown in Figure 3 is modified when the IC takes different postures. For
crouching and kneeling, the lower and upper bodies are shrunk by a percentage. The prone case, shown
in Figure 4, is more complex. Here the upper body is moved beside the lower body. Both components are
shrunk in height to match the standing depth. The overall depth is expanded to match the standing
height.



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

15

In order to allow changes to entity dimensions during the simulation, a private copy of the physical
database structure is created for each life form simulated by the local ModSAF or simulated remotely.
Initially this structure contains a copy of the nominal physical characteristics; when the lower body model
changes its posture state, however, modified dimensions are written into the entity’s copy. When various
libraries in DISAF request the entity’s physical data, they are passed the private data instead of the static,
global data.

The prone configuration has deeper ramifications for ModSAF than just a modification to dimensions.
Some modules in DISAF (e.g., visual detection and hit determination) assume that the turret is always
mounted on top of the hull. We have not as yet sought out all of the affected models, but we believe that
any simulation errors caused by this assumption are outweighed by other inadequacies in the current
models.

4.7.2 Dynamic sensor location
In addition to the physical dimensions, the location of the eyes changes as the entity changes posture. In
the case of kneeling and crouching, the sensor location simply moves down as the entity gets “shorter.”
For the prone case, the eyes move forward and down. In all cases, the eyes are set a constant distance
below the top of the entity. This modification is made in the sensor component model when the entity is a
life form and the sensor name is “eyes.”

5. Individual Behavior

5.1 Movement
The movements of ground vehicles in ModSAF is currently planned using a sophisticated temporal-spatial
obstacle map and collision avoidance and reaction behaviors. In DISAF we are developing alternatives
that are more appropriate to the scale of ICs rather than vehicles.

5.1.1 Movement control
We have found that the nominal movement control algorithm in ModSAF has a great deal of difficulty in
the tight confines of an urban environment, either inside buildings or out in the streets. In this
environment the movement algorithm is geometrically lacking because it sometimes produces paths that
needlessly overshoot the waypoints, and sometimes fails altogether when there is a path available (see
Figure 5). It is also not very good at maneuvering multiple entities in close quarters (such as tanks at a
bridge). Tactically the algorithm is not adequate because it swings wide around obstacles (see figure
below) rather than moving near them for cover. Practically the algorithm is difficult to use in new ways
because it is very long and complex and has several parameters buried in it as constants—parameters that
would need to change for an entity as different from a vehicle as an IC is.

Upper bodyLower body

Entity center

Figure 4. Prone IC configuration



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

16

To achieve precise movement control in close quarters, we have developed an alternative movement
control system that moves in a straight line between waypoints rather than trying to generate smooth,
curving paths between them. This system is implemented in the Lower Body module described above.
This movement controller does not plan routes or avoid obstacles; it is intended only to follow a precise
path given to it by a movement behavior. The VICMove behavior, described below, was developed to
provide such a path for IC entities.

5.1.2 Collision detection
Collisions in ModSAF are detected by a module that is independent of the movement model (lower body
model). When a collision occurs it notifies the movement model and a collision response module.
Collisions are expected to be rare events because vehicles are spaced far apart relative to their size and the
nominal routes give wide clearance around obstacles (see above). A typical collision response involves
bouncing back from the obstacle, stopping the entity, and possibly replanning a path. The response is not
physically accurate; the entity is not stopped just at the point of contact with the obstacle. Furthermore,
the response behavior runs much less frequently than the movement control and collision detection models
so cannot respond to frequent collisions. For this reason multiple collisions with the same object are not
reported if they occur within a refractory period of several seconds. Sometimes this results in ICs passing
through walls on their second or third collision.

This nominal collision detection technique has previously been reported to be awkward for IC entities
moving in formation (Howard et al 1995). A team of ICs moving in a building stresses the technique even
more because they may frequently be within a body width of each other and actually brush against a wall
as they move.

For ICs in DISAF the collision handling technique was modified in two ways. First, collision detection is
more intimately connected to the movement model so that collisions are checked during every movement
“tick” and the resulting IC position and velocity can be adjusted. Second, the collision response includes
accurate adjustment of position to a point just prior to contact and velocity to a direction tangential to the
obstacle. This allows ICs to have frequent contact with, for example, walls, without bouncing around
excessively.

5.1.3 Movement resources
Unlike most vehicles, an IC does not have to face the direction it is moving. Furthermore, an IC can
adopt different postures while it is moving. In some cases, it may be desirable to have different behaviors
control different aspects of movement. For example, in section 4.6 we mentioned that the targeting

Figure 5. IC swinging wide around a corner under control of the nominal ModSAF algorithm



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

17

behavior had to control body orientation; the IC can shoot on the move if translation is controlled
independently. We use this combination in the fireteam room-clearing behavior. Another example of
multiple independent control is when ICs face a certain sector (with their bodies, not with their turrets as
a tank would) while they move. We use this combination to face a trailing IC to the rear when a fireteam
moves down a hallway.

To allow these independent motions, we extended DISAF’s nominal “movement resource” to both a
movement and an “orientation” resource. These resources are requested by behaviors and arbitrated by
the Task Priority module. The moderated resources allow different behaviors to work together. For
example, the behavior to engage targets controls the orientation of the IC if there is a target. The
movement behavior VICMove requests orientation so that the IC can face his direction of travel normally,
but defers to the engage target behavior if there is a target.

5.1.4 The IC Move behavior
Move is an entity or individual level behavior. The objective of this behavior is to provide precise
movement, posture and weapon state control. Furthermore the objective is to provide human-like versus
tank-like behavior generally used for all ground vehicles in ModSAF. This movement behavior is the
underlying behavior for Clear Room behavior and is generally use inside buildings but can also be used on
open terrain.

Figure 6 - Precise IC Movement Control

Figure 6 presents an example of movement control. An IC is prepared to enter a building through a door
slightly wider then the width of the IC, travel close to a wall, spin 90° and stop, all without clipping the
doorjamb, wall or any other object that might be in the room. Entity orientation is independent of
direction of travel. It is desirable to have the ability to move sideways through the door jam or any other
time during movement. In the case of engagement of enemy, the IC shall rotate and track the enemy
independent of current movement.

This task is spawned from the Unit Operations Editor on an individual IC. It is also spawned from
uclearroom. It provides public init, parser, etc. functions. Parameters that can be set from the GUI
include:

• Route: either a point or a line. Note that if the route is a point, the IC entity will move directly toward
it and not attempt to plan a route around obstacles.

• Start at beginning: A Boolean flag indicating that the entity should always move to the beginning of
the route (line) rather than moving to the nearest point on the route to begin.



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

18

• Terminate at end: A Boolean flag indicating that the behavior should terminate when the end of the
route has been reached. Otherwise, once the entity has reached the end of the route, it will move back
to the beginning and repeat the move indefinitely.

• Stance: Allows the user to set the posture of the IC.

• Weapon state: Allows the user to set the state of the entity’s weapon (stowed, deployed, raised).

• Speed: The speed at which the entity will travel.

• Maximum speed: The maximum speed that the entity can travel. Has no real effect currently.

• Angle mode: A Boolean flag indicating that the entity should always face the direction indicated by
the angle parameter while it moves.

• Angle: The desired facing angle.

5.2 Location fire
The location fire task is an IC level behavior that is can be exercised directly from the GUI or utilized by
unit level behaviors such as Suppressive Fire and Conduct Fire and Movement. It can be used by the
SAW and AT8 to fire a single round at a building, door or window. Unit level behaviors use it to generate
continuous fire over an area for a duration specified in minutes or seconds. It is important that the
interface allow specification of the type of fire.

This task is spawned from the Unit Operations Editor on an individual IC. It is also spawned from
usupprfire. It provides public init, parser, etc. functions. Parameters that can be set from the GUI
include:

• Target location: this is a 3-dimensional location so that points off the ground can be specified.

• Elevation reference: the Z in the target location is relative to either the terrain elevation at the XY
given in the location, or relative to the firing entity’s elevation. The former is useful for most cases (it
implements an “above ground level” reference), but thelatter may be useful in a multi-elevation
structure.

• Primary/secondary weapon: Refers to the primary or secondary weapon held by an IC.

• Stance: Allows IC posture to be set.

• Fire duration: Sets the duration of the location fire. “0” indicates one volley, however long it takes to
fire it.

5.3 Targeting threats
In DISAF the existing ModSAF behavior for engaging threats, vtargeter, was extended in several ways.
For ICs, vtargeter deploys the a weapon when there are no targets, just to make sure the IC is prepared.
This only happens if no other task is trying to use the weapon; it is a default action. Also when no targets
are visible, vtargeter makes sure that the weapon is not in the raised position.

Behaviors can set a firing “mode” via vtargeter by calling public interface functions. The first function
sets the fire selector of the weapon, if one is available. The selector allows weapons such as the M16A2 to
fire in a semi- or full automatic mode. (The M16A2, as determined by parameters to the IC Weapon
module, can also fire in 3-round-burst mode.) The second function can cause vtargeter to fire more than
one round at a target without checking, for the second and subsequent rounds, whether the target is still
visible or whether the threat situation has changed. This mode of engagement is used inRoom Clearing



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

19

behavior, per Combat Instruction Set, to make the IC shoot two rounds at each target. (This is in semi-
automatic mode, not a two-round automatic burst.)

Finally, vtargeter controls the weapon position when engaging targets, making sure that the weapon of
choice is deployed and then raised to the firing position before firing.

6. Unit Behavior

6.1 Suppressive fire
A IC, Fireteam or Squad may be required to provide suppressive fire on an enemy objective while another
unit maneuvers towards the enemy location during an attack or assault on the objective. The unit’s goal is
to destroy or suppress the enemy and keep the enemy from firing on the assaulting force. Suppressive
fires are distributed evenly over the objective. Continuous fire is maintained, even if no enemy weapons
or positions are detected.

This task is spawned from the Unit Operations Editor on an IC fireteam or squad. It provides public init,
parser, etc. functions.

The following data may be entered using the ModSAF GUI screen.

• Left_trp_tgt_area: Specifies the left target reference point. If the right_trp_tgt_area is not
specified, then this point defines a single point target area.

• Right_trp_tgt_area: Specifies the right target reference point. If the same point is specified for
left_trp_tgt_area or not specified, the target area is a single point as defined by the
left_trp_tgt_area. Otherwise, the target area is a line between the left_trp_tgt_area and
right_trp_tgt_area.

• Fire_duration_scale: Specifies the period that the Team should provide Suppressive Fire. Values
of 0 indicate continuous firing.

The following parameters are configurable for the Suppressive Fire task at start-up time in the individual
entities parameter files.

• Tick_period: specifies the length of a second (time) in milliseconds.

• Shooter_prep_time: Specifies the time in milliseconds that the Team needs to setup its gun and
be able to fire.

• Battle_position_width: Specifies the width of the line that Team uses when it occupies its
position. Determines how large an area will be searched to find a defilade position.

• Shooter_guise: Specifies the guise of the shooting vehicle in the Team. A value of 0 indicates all
DIs in the Team will be shooting.

6.2 Clear room
Clear Room is a Fireteam level behavior derived from the Software Combat Instruction Set DI9004. It is
designed specifically for an Army four-person fireteam. The purpose is to enter a room and engage enemy
with weapons fire. Each fireteam member enters the room in a specific order and moves to a specific
location, visually searching specific sectors (see Figure 7). The behavior ends when ICs have reached
their final positions in the room to be cleared.Room clearing is performed by control of posture (stance),
weapon state, rules of engagement and movement. For the duration of ClearRoom, ROE is set to "volley"
and "free", stance is set to kneeling (crouched when moving) and weapons are raised.



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

20

Inputs to the Clear Room editor can be split into two groups, 1) movement to Ready Positions and 2)
movement into the room. The first group is the column headed by #1 M16 Ready Position. These four
positions define starting positions for each member of the fire team. A speed input parameter defines how
fast ICs should travel to the Ready Positions. During this movement, ROE is set to free, weapons are
raised and stance is set to crouch (kneeling with movement). The second group starts with Route through
door and continues with the column headed by #1 M16 Final Position. At 1/2 second intervals and in
order (#1, #2, #3, and #4), each IC first follows the Route through door then a route to a final position.
Route through door is optional.

7. PVD Enhancements

7.1 Icons
In order to see more precisely what the DISAF ICs are doing, and to see how they are moving in the
confined spaces of building interiors, the IC icons on the ModSAF Plan View Display (PVD) were
replaced. The stick figure that was used to represent ICs in the current version of ModSAF was replaced
with a bird’s eye picture to be consistent with other entities and to show the true space occupied by the IC.
Different appearances were designed for standing, crouching, kneeling, and prone postures; in each
posture, the stowed, deployed and in-firing-position states are different. Figure 8 shows the new icons.

7.2 Map scale
In addition to adding new icons, the resolution of the PVD was increased. The minimum display scale is
now 1:25, and it is possible to place points on the display to resolutions less than 1 meter. These changes
required updating the internal representation (type and width) of graphic coordinates in ModSAF. Both
of these new capabilities are necessary for a DISAF operator when the entire area of engagement is only
20 meters or so on a side!

7.3 MES building display
The ModSAF PVD has been extended to show the interior of MES buildings. This display is necessary
for placing ICs inside buildings, placing routes and other objects inside buildings, and understanding what

Figure 7 - Clear Room, Center Door. From [Dept. of the Army 1993]



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

21

entities inside buildings are doing. The display not only shows interior walls, but marks apertures
indicating whether they are doors or windows and whether they are open or shut. Figure 9 shows the
appearance of the display as of the time of writing.

8. ModSAF Integration
DISAF ERT functionality was integrated with ModSAF 4.0 in August and September 1998. Thus DISAF
will be available to the community when ModSAF 5.0 is released in early 1999.

8.1 Version History
Date Event DISAF version Based on ModSAF

version
8/97 End of phase 1 DISAF development (open

terrain behaviors)
1.0 MC SAF

9/97 Partial integration of DISAF modifications into
ModSAF

2.0 STOW 2.2.4

3/98 ERT enhancements to support April 98 demo 2.2
7/98 ERT enhancements to support user experiments 3.0
9/98 Pre-integration into ModSAF 4.0 4.0 4.0

10/98 ModSAF 4.0 with DISAF and all other
integrations

5.0 5.0 pre-release

Figure 8. Left: new ModSAF IC icons for (left to right) prone, sitting, kneeling and standing, and (top to bottom) stowed,
deployed, in-firing-position. Right: Crouching posture with weapon in firing position, used for the “quick kill” posture

required by the room clearing behavior.



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

22

8.2 Integration Documentation
As part of the ModSAF integration task, five documents were written:

• Software Requirements Specification[SAIC 1998a]. The Software Requirements Specification
(SRS) describes the requirements of ModSAF capabilities and the methods to be used to ensure that
each requirement has been met. Furthermore, the SRS is used as the basis for design and qualification
testing of new ModSAF capabilities.

• Conceptual Model Document[SAIC 1998b]. A conceptual model describes the domain (real-world)
aspects which pertain to new capabilities desired for ModSAF, whereas a Software Requirements
Specification describes the scope and fidelity of only the relevant aspects of the domain required for
the simulation software. Domain information is usually obtained during “knowledge acquisition” and
“knowledge engineering” activities by Subject Matter Experts.

• Software Design Description[SAIC 1998c]. The Software Design Description (SDD) describes the
design of ModSAF capabilities. It describes the capability-wide design decisions, the architectural
design of the capabilities, and the detailed design needed to implement the software. The SDD is used
as the basis for implementing the software. It provides the acquirer visibility into the design and
provides information needed for software support.

Figure 9. ModSAF PVD showing MES interior



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

23

• Software Test Description[SAIC 1998d]. The Software Test Description (STD) describes the test
preparations, test cases, and test procedures to be used to perform testing of ModSAF SRS
requirements. The STD is used as the basis for proving that specific requirements have been satisfied
by the corresponding implementation.

• DISAF Users’ Manual. While not officially part of required ModSAF integration documentation,
the Users’ Manual is nevertheless an important part of DISAF documentation. The Manual explains
with text, figures and screen captures how the user can use the behaviors in DISAF and what to expect
from them.

9. Support Activities

9.1 Team Meetings
Throughout the DISAF project, Integrated Project Team (IPT) meetings were held including
representatives from STRICOM, Lockheed Martin, and SAIC. These meetings were used to discuss and
prioritize the many technical issues encountered on the project. In addition, the DISAF team participated
in two Technical Interchange Meetings (and associated “pre TIMs”) to discuss DWN-wide technical
issues with all contractors.

9.2 Experiment Support
SAIC delivered DISAF, Dismounted Infantry Semi Automated Forces, to Ft. Benning in July to support
engineering and user experiments in the Dismounted Warrior Network (DWN) project. During these
experiments, teams of soldiers from Ft. Benning on simulator platforms assaulted and cleared a virtual
building with the help of three fireteams of SAF soldiers. A DISAF soldier also breached a building wall
with a missile to provide the entry point.

After the experiments were completed, a media day was held for local and national news organizations.
DWN was featured on CNN Headline News, ABC News, and Columbus, GA news programs.

9.3 Web Site
Documents generated as part of the DWN program were made publicly available via a site on the World
Wide Web. This site was maintained by Resource Consultants, Inc. (RCI) under subcontract to SAIC
from the beginning of the ERT phase (9/97) until the end of January, 1998. At that time the content of
the site was made available and maintained by STRICOM as part of their site. The computer used by RCI
to provide the site was later transferred back to STRICOM.

9.4 Technical Conferences
Over the year of the DISAF ERT project, various members of the project team attended the Spring
Simulation Interoperability Workshop (SIW) in March 1998, the Computer Generated Forces and
Behavioral Representation Conference in May 1998, and the Fall SIW in September 1998. Papers were
presented at all three ([Ourston 1998], [Reece1998a], [Reece1998b]).

10. Lessons learned
• MES Creation. The MES creation steps are described in Section 3.1.1. While the process is

documented and repeatable, it is tedious and error prone. Especially difficult is step 3, which requires
an AutoCAD operator to reconstruct the building by hand using the OpenFlight geometry as a guide.



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

24

We encountered several problems in our MES (which were corrected) due to small errors in the
placement of triangle vertices. The operator must also use care in naming layers so that the correct
topology is generated. Any errors in these steps can result in an illegal (in terms of the CTDB definition)
MES, a mal-formed MES that will cause errors during elevation lookups etc., or even just an MES
whose geometry does not correspond to the visual model. It would be preferable to automate the
OpenFlight to MES process.

It is also worth noting that during the original creation of Building A, the MES creation steps were
performed by four different organizations in three different cities. When problems were discovered in
the final database, they had to be traced back through the creation steps from organization to
organization. A fix early in the process then had to be progagated forward again. Each iteration of this
process took a long time.

• The footprint field of an MES enclosure structure is not useful. If the room is concave, then the
footprint (a convex hull in the xy plane) may overlap other enclosures.

• Doors are not represented in the MES definition. Also, there is no easy way to model furniture inside
an MES. These problems should be addressed to make MOUT simulations with DISAF more realistic.
As it its, it is not possible to replicate the actual McKenna MOUT site within DISAF.

• MES structures are dynamic: apertures can have their characteristics changed (mobility, opacity), and
in DISAF doors and walls can be breached. Unfortunately there is no way to save or restore the state of
an MES building in DISAF. There is no way for a user to open or close doors from the GUI to set up a
scenario. Neither is there a way for entities under behavior control to open doors or windows (except for
shooting them out permanently). We found that in many cases it was inconvenient to work with the
MES in a scenario because of this lack of control over the dynamic aspects of the MES.

• The MES-specific routines in terrain library in DISAF were based upon some bad assumptions about
MES’s, resulting in bugs and crashes. We believe this was partly due to the fact that the developers of
the MES code did not have a good MES to test with and did not have entities that they could move
easily around buildings. Nevertheless, it was a problem for this project. We anticipate that additional
DISAF development in the MOUT environment will uncover additional problems as the MES interface
functions are exercised more.

• There are numerous aspects of buildings that may legally be encoded in MESs in several different ways.
For example, apertures (notional boundaries between rooms) may be encoded anywhere within the door
frame. The choices made could conceivably have an impact on MES terrain reasoning algorithms; for
example, a search for cover (the door frame area) within a room. Some conventions for design were
developed in the DISAF project (see Appendix A). Additional conventions will be needed as more
behaviors are developed for MESs.

• Although not originally part of the DISAF-ERT project plans, the numerous PVD enhancements that
wereimplemented (see Section 7) turned out to be crucial for development, debugging, scenario
development, and user control. Further enhancements to the PVD are necessary, as it is difficult to
distinguish between entities on different levels and there is no way to display different buildings
independently.

• The DWN simulators used the DIS 2.0.4 protocol to represent ICs on the network. ICs thus were
represented in terms of a posture or gait (standing, walking, running, crouching, kneeling, prone, or
crawling), a weapon state (weapon 1 or 2 stowed, deployed, or raised) and a velocity. The human figure
animation system, DI-Guy, displayed a moving figure corresponding to the DIS state. Since not all
states were available via DI-Guy, some interpretation had to be made. For example, there is no
kneeling-with-velocity animation, so kneeling + velocity is interpreted as crouching + velocity. In spite
of several discussions at TIMs and via email, the DWN systems did not all have uniform interpretations
during the experiments. Further effort should be made to standardize IC states and animations.



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

25

• The human figure animations used by the VICs showed ICs changing state realistically—over the
course of several seconds. DIS was designed with the assumption that state changes would be
instantaneous. As a result, simulations using the figure animations can lose coherence during the
transitions. DISAF delayed its internal state change to match the remote animations, as discussed in
Section 4.3. However, this delay would be inappropriate for interaction with another DISAF system
because the remote DISAF would change the IC state instantly. What is required is an extension to the
network protocol—perhaps via a new HLA FOM—toallow simulations to indicate when transitions
were starting and how fast they would take place, or when they ended.

• The DISAF ERT project team originally envisioned implementing numerous unit MOUT behaviors
(see the CIS list in Table 3). However, the majority of the effort went into developing “infrastructure”
and “primitive behaviors.” This work included modification and additions to the terrain functions, the
console command set, the internal entity definitions, the weapons model, the movement control model,
the plan view display, the user interface editor, and other fundamental areas of DISAF. A look at the
number of lines of code involved in modification vs. new behavior code (see Section 2.8) shows that
approximately six times more code was involved in DISAF modification than in new code development.
The lesson to be learned here is that developing a capability for a new type of entity like and IC requires
a great deal of effort for modeling the physical or primitive aspects. We believe that future
enhancements of DISAF will require even more work in these aspects along with behavior additions.

11. References
Department of the Army (1993)An Infantryman’s Guide To Combat in Built-Up Areas. Field Manual
No. 90-10-1.

Howard, M., Hoff, B., and Tseng, D. (1995). “Individual Combatant Development in ModSAF.” In the
Proceedings of the Fifth Conference on Computer Generated Forces and Behavioral Representation.
University of Central Florida.

Koechling, J. (1997) “Live Reckoning for Simulated Dismounted Infantry using DI-Guy(tm)”. In
Proceedings of the 1997 Fall Simulation Interoperability Workshop, SISO.

Lind, J. (1995).Target Acquisition Models forJanus (A). NAWCWPNS TM 7811, Naval Air Warfare
Center Weapons Division, China Lake, CA.

Lockheed Martin Information Systems (1998).MES Editor and DISAF Support: Summary Report.CDRL
AB05 of Delivery Order #55. Lockheed Martin Information Systems Company, Orlando, FL.

Ourston, D., D. Reece, and P. Dumanoir(1998). “Issues Involved With Integrating Live and Artificial
Virtual Individual Combatants.” InProceedings of the 1998 Spring Simulation Interoperability
Workshop. IEEE.

Reece, D., D. Ourston, M. Kraus, and I. Carbia.(1998a) “Updating ModSAF for Individual Combatants:
the DISAF Program”. InProceedings of the 7th Conference on Computer Generated Forces and
Behavior Representation. University of Central Florida.

Reece, D. and P. Dumanoir(1998b) “Conventions for Representing Humans in a DIS Exercise: the DWN
Experience”. InProceedings of the 1998 Fall Simulation Interoperability Workshop. IEEE.

SAIC (1998a)DWN ModSAF Baseline Documentation, Part 1: Software Requirements Specification.
CDRL AB06 of Delivery Order #55. Lockheed Martin Information Systems Company, Orlando, FL.

SAIC (1998b)DWN ModSAF Baseline Documentation, Part 2: Conceptual Model Document. CDRL
AB06 of Delivery Order #55. Lockheed Martin Information Systems Company, Orlando, FL.



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

26

SAIC (1998c)DWN ModSAF Baseline Documentation, Part 3: Software Design Description. CDRL
AB06 of Delivery Order #55. Lockheed Martin Information Systems Company, Orlando, FL.

SAIC (1998d)DWN ModSAF Baseline Documentation, Part 4: Software Test Description. CDRL AB06
of Delivery Order #55. Lockheed Martin Information Systems Company, Orlando, FL.

Stanzione, T.et al. (1996). “Multiple Elevation Structures in the Improved Computer Generated Forces
Terrain Database” In the6th Conference on Computer Generated Forces and Behavioral Representation.
Institute for Simulation and Training.



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

27

Appendix A.
MES definition conventions

Although DISAF has not yet been extended to incorporate many new terrain reasoning algorithms dealing
with MES’s, several ambiguities in the MES definition did become apparent when working with the
existing algorithms. This section documents several aspects of MES building that we feel should be
standardized so that future algorithms can depend on a standard meaning for the definition.

An MES is a collection of geometry and topology information which describes both the physical geometry
of a multi-elevation structure (typically a building) and the connectivity of different parts of the structure
(typically rooms). The geometry of the structure is broken down into distinct volumes calledenclosures.
Typically, an enclosure is comprised of an individual room within a building. The topology of the
structure is represented by the connections between enclosures. These connections are calledapertures.
Many details of MES representation are described in [Stanzione 1996].

Geometry
• Enclosure triangles must not intersect, be shared, or be overlayed (coplanar) with triangles from any

other enclosures. The volumes for enclosures should be distinct, except for enclosure 0, which
contains all the other enclosures.

• Enclosure triangles are always defined such that their front face is defined by a counter-clockwise
winding of the vertices of the face. The front face of enclosure triangles always pointsinward to the
enclosure.

• There should never be holes or gaps in an enclosure geometry, except for the apertures which connect
to another enclosure

• Any edges of enclosure faces must share vertices at the endpoints of the edges – there can be no T-
vertices.

• Enclosures should normally be constructed so that they include the parts of door and window frames
up to the physical door or window. I.e. if the actual door is in the middle of the door frame between
two rooms, then the enclosure for each room should include polygons defining half of the door frame.
If the door is actually one side of the door frame, then one enclosure should contain door frame
polygons and the other shouldn’t. If the aperture is a doorway or opening without a physical door or
window, then the door frame should be placed entirely in one enclosure. This placement aids in
reasoning about how such a frame may be used for movement and cover.

• The footprint of the enclosure is the convex hull in the XY plane of the enclosure. Note-- since this is
defined in the reader file, before translation to world coordinates, there is no guarantee that the
footprint in world coordinates (in the libctdb data structure) will be in the XY plane.

• A special case is the first enclosure, enclosure 0 (zero), which is the exterior of the MES. Enclosure 0
only contains apertures which connect it to enclosures on the inside of the structure. Every MES
must have an enclosure 0. The triangles for enclosure 0 should be oriented such that their front faces
point outwards from the MES.

• Apertures are defined as an N-sided polygon outline at the juncture of two enclosures. The N-sided
polygon should be convex. The aperture structure also contains polygons which comprise the
triangulation of the outline.

Topology
• An aperture always connects exactly two enclosures together.
• All enclosures should normally connect to at least one other enclosure via an aperture.



ADST-II-CDRL-DWNERT-9800259
30-Sept-1998

Approved for public release; distribution unlimited
UNCLASSIFIED

28

Apertures
Apertures have the following attributes:
Attribute Description
Material Material type of the aperture (glass, etc.). There is

no given standard enumeration for type.
Open Boolean 0/1 indicating if aperture is penetrable

(can be moved through)
Visible Boolean 0/1 indicating if aperture is transparent
Wall thickness
(Two—one for each connected enclosure)

(2) entries – thickness of wall on either side of the
aperture. Note that the first thickness value is in
the direction of the aperture, i.e. the normal vector
of the aperture outline polygon.

Step to enclosure
(Two—one for each connected enclosure)

Boolean 0/1 indicating if there is any step down
from the aperture to the enclosure (i.e., usually 0
for doorways).

Apertures should normally be created right at the edge of where one enclosure butts up against another, as
opposed to in the center of a doorway or window. In this model, that would mean that one of the
wall_thickness parameters is always 0, and the other is the thickness of the door or window frame. See
Figure 10.

Figure 10. Aperture orientation convention

Draw aperture on
this edge

Enclosure A Enclosure B

Aperture
orientation


